Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Iterative Driver Estimation and Assimilation (IDEA) data assimilation technique was used with the Whole Atmosphere Model (WAM) to improve neutral density specification in the upper thermosphere. Two different neutral density data sources were examined to enhance the capability of simulating the global thermospheric state. The first were accelerometer estimates of neutral density from the Challenging Mini‐Satellite Payload (CHAMP) satellite. The second were neutral density estimates from the Global Ultraviolet Imager (GUVI) limb‐scan airglow observations aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. Due to the intensity of the November 2003 storm, two changes were necessary in WAM. The first was allowing the Kp geomagnetic index to exceed 9 and the second was changing the relationship between Kp and the solar wind parameters used to drive the model. With these changes, results show that IDEA effectively captures the thermospheric neutral density at the CHAMP satellite altitude and follows the time‐dependence through the November 2003 storm period. Furthermore, a cross‐comparison was conducted with the GUVI dayside limb scan measurements. GUVI neutral densities within 270–320 km show the closest agreement with WAM when CHAMP data was assimilated by IDEA. We speculate on the potential for observations from GUVI at 300 km to be used as a data source in the IDEA‐WAM simulations. These simulations demonstrate the utility of the IDEA data assimilation technique with physical models and that using either accelerometer observations or ultraviolet airglow limb measurement during extreme storm periods could be used.more » « less
-
Vishniac, E; Muench, A (Ed.)Models for space weather forecasting will never be complete/valid without accounting for inter-hemispheric asymmetries in Earth’s magnetosphere, ionosphere and thermosphere. This whitepaper is a strategic vision for understanding these asymmetries from a global perspective of geospace research and space weather monitoring, including current states, future challenges, and potential solutions.more » « less
-
null (Ed.)We have used empirical models for electric potentials and the magnetic fields both in space and on the ground to obtain maps of the height-integrated Pedersen and Hall ionospheric conductivities at high latitudes. This calculation required use of both “curl-free” and “divergencefree” components of the ionospheric currents, with the former obtained from magnetic fields that are used in a model of the field-aligned currents. The second component is from the equivalent current, usually associated with Hall currents, derived from the ground-level magnetic field. Conductances were calculated for varying combinations of the interplanetary magnetic field (IMF) magnitude and orientation angle, as well as the dipole tilt angle. The results show that reversing the sign of the Y component of the IMF produces substantially different conductivity patterns. The Hall conductivities are largest on the dawn side in the upward, Region 2 fieldaligned currents. Low electric field strengths in the Harang discontinuity lead to inconclusive results near midnight. Calculations of the Joule heating, obtained from the electric field and both components of the ionospheric current, are compared with the Poynting flux in space. The maps show some differences, while their integrated totals match to within 1 %. Some of the Poynting flux that enters the polar cap is dissipated as Joule heating within the auroral ovals, where the conductivity is greater.more » « less
An official website of the United States government
